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It is demonstrated that the corrections

resulting from replacement of the pseudo, two-body transition operators

appearing in either the Watson or the Kerman-McManus-Thaler formalisms are

comparable in size to the multiple scattering corrections.

Numerical

evaluation of the on-shell matrix elements of these correction terms are

performed and energy dependencies studied.
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Corrections to the first order optical potential with the impulse
approximation are presented.
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1. Introduction

Since the appearance of Watson's multiple scattering paperl) there have
been numerous formalisms and calculational developments in the field of
hadron-nucleus scattering. Among these, the Kerman-McManus-Thaler (KMT)
forma]ist) has been the most widely used. Because the multiple scattering
series for an optical potential has an infinite number of terms, described
through the use of suitably chosen pseudo two-body operators, it must be
truncated for practical calculations. The most frequently used approximation,
which keeps only the first term of the multiple scattering series, is known as
the single scattering approximation. The double scattering and higher order
terms are then neglected on the premise that they correspond to two-particle
correlations and higher, which are usually assumed to be small. A further
approximation is often made in which the pseudo two-body operator is replaced
by the free two-body t-matrix. This approximation, known as the impulse
approximation, is believed to be valid for high incident energies. However,
if we wish to perform an optical potential calculation beyond the impulse
approximation, the two lowest order corrections that should be considered
are: (i) the correction due to the replacement of the pseudo two-body
operator by the free t-matrix, namely the propagator correction or impulse
correction, and (ii) the next highest order term in the multiple scattering
series, namely the double scattering term. 1In the literature, there is a
tendency to include either but not both corrections 3.4)

In this paper, we show that these two corrections are comparable in size
for either the Watson or the KMT formalism; therefore, we should include both
of them in any calculation beyond the first-order impulse approximation. This
point was first discussed by Saperstein 5) for the Watson formalism. We

derive expressions for these corrections in both the Watson and KMT




formalisms. We also demonstrate that, under the extreme closure approximation
(neglect of the target nucleon momentum variable in the intermediate states),
the single scattering, or the first-order optical potential with the impulse
approximation, has a smaller total correction in the KMT formalism than in the

Watson formalism. At this point, we note that Tandy et al. 4)

, using a three-
body model for the first-order optical potential, obtained results indicating
that the first order Watson optical potential could be closer than KMT to the
impulse approximation result; however, they neglected consideration of double
scattering. In this work, we are interested only in the relative sizes of the
correction terms compared to the first-order impulse approximation. Hence, we
will make no direct comparison with data, since obtaining a close fit to the
data is highly model dependent in the sense that it depends upon the choice of
t-matrix and the target density function. Instead, we choose to study the
correction terms in a manner that is less model dependent. For this work, we

assume the closure and factorization approximations to be valid.

Nonrelativistic kinematics are used.

2. Multiple Scattering Series For The Optical Potential
In this section, we briefly rederive, for completeness, the multiple
scattering series of the optical potential in both the Watson and KMT
formalisms. We will first derive the Watson optical potential by starting
with the (A+1)-body Lippmann-Schwinger equation for the transition

operator T,
T=V+Va GOT . (1)

where the (A+l)-body unperturbed Green function G, 1s given by



_ . y=1
- Go = (E - ho - HA +1in) . (2)

Here h, and Hy are the projectile kinetic energy operator and A-body

target Hamiltonian, respectively. V is the residual interaction between the
A

projectile and the target nucleons, e.g., V =] Voi » Where v
i=1

body interaction between projectile and the 1th target particle and A 1is the

oi 1s the two-
number of target particles. In (1) we have displayed the target
antisymmetrization operator a explicitly. It is a reminder that when
expanding the many-body Green's function G, in the intermediate states, we
should only use the properly antisymmetrized target states. To obtain the

elastic scattering equation, we define the projectors P and Q by

v
i

8> <0, » (3)

and

P+Q, (4)
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where LR is the antisymmetrized target ground state. Using (3) and (4), we

can rewrite (1) in the form of two coupled equations as

-
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U+UPGyPT, (5)

and

[
1]

V+VQG,QU . (6)




The operator U appearing in these last two equations is the optical
potential operator, and (6) gives U 1in terms of the residual interaction V.

To express (6) in a multiple scattering series form, we write U as
A

U=7 U . so that (6) becomes
i=p °

A

by Vot T )
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Voi 0 G, Q jgl Uoj . (7)
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Now define a pseudo two-body operator 1 by

Toi = Yoi * Voi @6, Q 745 » (8)

and

Toi = Voi * Toi Q6 Q Vo - (9)

In terms of this operator +t, we can rewrite (7) as

i )
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The last equation (10) is the multiple scattering series for the Watson
optical potential which is to be used in (5) for the elastic scattering
amplitude. To arrive at the comparable KMT result, we start with (1) by
A
inserting T =i21 Toi to give

A

izl Toi = (11)
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We now define the KMT pseudo two-body operator 1 by

Toi - Voi ¥ Voi @ 6 Toi (12)

In terms of .. , (11) then becomes

) }

+ . a G T. . (13)
g T o .L. 0j

. i a .
01 0 ji

Since the matrix element of T must be taken between antisymmetric
target states and the target intermediate states to be inserted are also
antisymmetric, the matrix elements involved in (13) are symmetric. Therefore,
the matrix elements of each Tof® i=1l, 2, --, A are identical, and the izj
restriction in (13) can be accounted for by a mere counting factor; hence, we
arrive at

)
T=Ar + (A-1) ¢ a GOT . (14)
or
) ) ) )
T = (A-1)r + (A-1) ¢’ a GOT . (15)

where T and T' are related by

'
1 =ALo, (16)




Inserting projectors P and Q defined in (3) and (4) gives

] ] 1
T =Y +U P Go PT, (17)
and
1 ] ] (]
U =(A-1) v + (A-1) ¢ Q Go Qu, (18)
or
' 1 2
U = A-1 A-1

Tt Op) groi'oeoo %rojl‘P-- . (19)

Equation (19) is the multiple scattering series for the KMT optical
potential to be used in (17). The physical scattering amplitude is obtained
by rescaling with the (A/A-1) factor.

Although these two formalisms are different in appearance (e.g., the
pseudo two-body operators t and rl and the counting factor coefficients), the
physics contained in them is the same. Thus, if we solve (5) with (10) as
input, we expect the same result as would be obtained by solving (17) with
(19) as input and multiplying the result by a factor (A/A-1). The
relationships between these two formalisms are studied in ref. 6). Although
these two formalisms are expected to give the same result, one must use the
full optical potentials given by (10) and (19) in their respective scattering
equations. In practice, it is impossible to use the full optical potential in
either formalism. Therefore, the most common practice is to retain only the
first term in the optical potential series which is usually referred to as the
single scattering or the first-order optical potential (FOP). For the Watson

case, the FOP is given by




A
U(l) = .zl TO'i ° (20)
1:
and for the KMT case by
(1) ., A \
v =L 121 Toi s (21)

]
where the two-body operators +t and r are given by (8) and (12),

respectively. Clearly, it is then expected that, when truncating the optical

potential to any finite order, the results of the two different formalisms

will be different. Another common practice is the replacement of the pseudo
L]

two-body operator <t or t by the free two-body t-matrix, which is known as

the impulse approximation. In this approximation, the Watson FOP becomes

A
(1) _

UIm = .z toi . (22)

i=1
and for KMT it is
(1) A

_ A-1

UIm TR izl toi > (23)

where the free two-body t-matrix is defined as
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It is interesting to note that in this approximation, i.e., FOP under the
impulse approximation, U and U' differ only by a scaling factor. Since U
and U. given by (22) and (23) are the most commonly used, it is useful to
investigate how accurate these approximations are. We know, in general, that
FOP with the impulse approximation gives reasonably accurate predictions at
relatively high energies (~ 400 MeV). Does this occur, however, because the
multiple scattering corrections are negligible and the differences between
free t and t or r' are small, or because the total correction itself is
small? It would also be interesting to know at what energies either
correction is most important. The best way is of course to compare the FOP
U and U' given by (22) and (23) with their respective full optical
potentials. Since it is impossible to use the full optical potential we will
assume that the multiple scattering series for U and U' given in (10) and
(19) converge rapidly enough that the first two terms give us a valid
approximation to the full optical potential. This is reasonable because the
third and higher order terms correspond to quantities involving three and more
particle correlation functions, which are expected to be much smaller.

}
In terms of the free t-matrix, U and U , up to the second order in t,

can be written as

U = At + At (QGOQ - go)t + A(A-l)tQGoQt s (25)

and

U = (A1)t + (A-1)E(G, - g )t + (A-l)thGOQt i (26)



Here g, is the free two-body propagator appearing in (24). In (25) and
(26), the respective second terms on the right sides correspond to the
propagator or impulse correction arising from the use of free t, and the
third terms correspond to the double scattering correction. We will
demonstrate in this work that these two types of corrections are not
negligible themselves but, they are comparable in size and there are some
effective cancellations between them. Corrections due to the antisymmetri-

7,8) are not considered since

zation between projectile and target nucleons
the nature and origin of this correction is different. It should also be
noted that we are working in the multiple-scattering formalism in which we do
not include the projectile-target antisymmetry from the beginning. Our only
purpose is to study the consequences of using the FOP under the impulse

approximation.

3. Evaluation Of The Potentials
In order to evaluate the optical potentials given by (25) and (26), we
form matrix elements of U and U' between initial and final elastic channel
states; <U"> = ij ¢0| U'. Ijs 3,> Where U'' is either U or U'. We then
evaluate four different types of matrix elements, viz. <t>, <tgyt>,
<tGot> and <tQ GyQt>. In evaluating these matrix elements we use a local t-

2)

matrix and we also employ the extreme closure approximation ', in which we

neglect the struck nucleon energy and the excited state target energies in the

energy denominator. As a result, we can use a form factor sum rule 2)

I pon (@) oo () = % 0gola * )
n [v9oY [V L ed -

* AR [Coplar 00 * poola) eoola )] s (27)




where p(q) 1is the Fourier transform of the single particle density o,(r),
- wn
\
and C(q, q ) 1is the Fourier transform of the pair correlation function

\
C(r, r') given by

(re 1) = pgp(r 1) = pgo(r) poolr ) (28)

]
Here po(r, r ) 1is the two-particle density. After employing a local t-

matrix, extreme closure approximation, and the sum rule given in (27), we

arrive at
® = tla) pyla) (29)
<tgyt = 13(a) pgola) (30)
<t = § ool L) + B [1,(0) + 130@)] (31)
and
<tQ6 Q> = ¥ o, ol (a) + Bl 1p(q) - Pl 2(a) . (32)

The functions Il(q), Iz(q) and 13(q) are defined as

1(a) = f—L—-L—,-r—J&—Ldk . (33)

Ey +n
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and
] [} ) (10 ] ] L] (]
tlk , k ) t(5~ s k) Coo(k -k k~ - k)
I4(q) = [ ———= e =, (35)
-~ Ek - Ek + in

]
where the momentum transfer q = k - k . It should be noted that in (32) we
have kept the terms proportional to the %- factor. Because the coefficient

of <t Q Gy @ © is (A-l)2 in the KMT case and A(A-1) in the Watson case, these
terms become comparable in size to the impulse correction terms. Now from

(25) and (26) we have

<U> = A t(g) Poo(d) + {(A-1) [13(3) - 1,(q) o (a)] - 1,(q)}

WA

+ {(A-1) [Il(q) poo(q) - Iz(q) + (A-1) 13(q)]} . (36)
and
) (A-l)z
<U'> = (A-1)t(q) poo(Q) + A [Iz(q) + 13(q) - Il(q) poo(Q)]}
(A-1)
+ { i [Il(q) poo(q) + (A-1) 13(32 - Iz(q)]} . (37)

In each of the last two equations, the terms in the first set of curly
brackets corresponds to the propagator correction, and the terms in the second
curly brackets correspond to the double scattering correction. We note here
that these two corrections are of comparable size and there will be some
cancellations between them in both the Watson and KMT optical potentials. We

emphasize that these cancellations result from the use of the extreme closure
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approximation. If the extreme closure approximation were not used, only

partial cancellation could be expected. After the cancellations, we have

W = Atla) pyo(a) + A LA - 1) 1,(q) - L(a)] , (38)
and
W'> = (A - Dtle) pygla) + (A -1) ZLy(q) . (39)

It is interesting to note that the total correction for the first-order
KMT depends only on the function 13(32 which involves the two particle
correlation which, for an uncorrelated nucleus, vanishes. Therefore it could
be a possible explanation for the success of first-order KMT with impulse

approximation for medium and high energy regions.

We now compare the first-order approximation to the more complete forms
given by (38) and (39) which include the propagator and double scattering
corrections. Of course one should consider the off-shell and non-local
effects in order to make a complete comparison. Since we have chosen a
lTocal t, the expressions for <U> and <U'> in (38) and (39) are already
local. Such local representations of the correction terms may not be a valid
approximation for low energies, but nevertheless, for this initial study, we
assume them to be adequate. Because the on-shell and near on-shell matrix
elements of the optical potential give the major contribution to the
scattering amplitude, we will concentrate our study on the on-shell matrix

elements. In what follows, we calculate the terms involved in (38) and (39)
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by employing a spin-isospin averaged local t-matrixg) and a Gaussian shape
nuclear form factor. Since we do not intend to make a detailed comparison
with experimental data, but are interested only in the overall effects of the
correction terms, we feel justified in the use of this simple t-matrix and
nuclear form factor. The free N-N t-matrix used is of the form®)

_32
t(q) = Cle,0,a)e 9 , (40)

where C(e,o,a) 1is a complex quantity depending on e, the N-N C-M energy;
g, the total N-N cross section; and a, the real-to-imaginary-part ratio of
the forward scattering amplitude. For the nuclear form factor, we use the
Fourier transform of a harmonic-well shape densityg) given by
2,2
o(r) = p 2] e " /2

[1+y( (41)

|-

0

The correlation function in configuration space is chosen to be 10, 11

CF, F) o= o o(F) G| TF-F] , (42)
with the function G(| F}-'F |) given in a parameterized form. Detailed
expressions of these functional forms and paramete&s can be found in
refs. 9, 10, and 11.

In figs. 1 and 2, we show the on-shell optical potential as a function of
momentum transfer q. In fig. 1 the curve denoted by UWl corresponds to the
first-order approximation for the Watson optical potential, UW12 corresponds
to the potential with impulse correction only, UW13 refers to the one with
double scattering correction alone, and UW123 contains both types of

corrections and corresponds to the expression given by (38). Similar
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notation is used for the KMT potential in fig. 2. In both figs. 1 and 2, the
on-shell matrix elements are calculated for a 100 MeV proton projectile
incident on a 1% target nucleus. Serious overestimations or underestimations
of the real and imaginary parts of the on-shell optical potentials can be seen
for both Watson and KMT formalisms at this energy. It is obvious also that
these corrections are of comparable magnitude, and they should both be
included in any serious calculation beyond the use of the first-order impulse
approximation. We also note here that the corrections become larger at higher
momentum transfers.

In figs. 3, 4, 5, and 6, we show the percentage difference between the
on-shell optical potential with both corrections denoted by U(Z) and the one
given by the first-order approximation denoted by U(l). The percentage

difference is defined as

o(2) _ )

A= U(Z) x 100% . (43)

We show calculated results for 100, 200, and 300 MeV incident lab
energies for the proton - 16 optical potential. At 100 MeV the real part of
the Watson potential gives a 16% difference at the forward angle and about 50%
difference at q = 2 fm-1, Although KMT results yield a smaller percentage
difference in this momentum transfer range, it is obviously not negligible.
This leads us to the conclusion that the first order (tp) approximation is
not valid at this energy for either formalism. As the incident energy
increases, the percentage differences becomes smaller for both real and
imaginary parts of the on-shell potential for each formalism. At 300 MeV, the

real part of the KMT potential has less than a 1.7% difference in the range
q=0toq=2 fm‘l, while the Watson potential still gives an 8% to 16%
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difference in the same momentum transfer range. Although this does not imply
that the KMT formalism with the t, approximation is absolutely reliable at
this energy because of possible contribution from non-local and off-shell
effects, it suggests that the tp (KMT) approximation is reasonable at this
energy. Note also that, although the percentage difference in Watson on-shell
potential decreases as the incident energy increases, there remains non-
negligible contributions from the correction terms even at 300 MeV. We also
note here that the KMT formalism always gives a smaller total correction at
all energies. It must be emphasized that all our conclusions rely upon the
extreme closure approximation assumption and the fact that off-shell and non-
local effects were not considered. We suggest that a full scattering
calculation should be performed which includes both impulse and double
scattering corrections simultaneously and consistently. Work on this has been

initiated.

5. Conclusion
WALA A~
It has been shown that, in the multiple scattering formalisms for the
optical potential, the propagator correction to the impulse approximation and
the double scattering correction are of the same order. If the extreme
closure approximation is assumed, then sizable cancellations between these two
types of corrections occur. Therefore, it may be incorrect to include only
one type of correction in any calculation beyond first-order under the impulse
approximation. We calculated the on-shell optical potential for both the
Watson and the KMT formalisms and demonstrated that for the extreme closure
approximation, the KMT potential has a smaller correction. A complete

scattering calculation incorporating the above-mentioned corrections is in

progress.
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Figure Captions

The real part of the Watson optical potential with different
correction terms. Notation is explained in the text.

The real part of the KMT optical potential with different
correction terms. Notation is explained in the text.

The percentage differences A as defined by Eq. (43) vs q the
momentum transfer. A for the WatSOfsand KMT potentials are shown
for the case of 100 MeV nucleon on *°0.

Same as Fig. (3), but for 200 MeV.

Same as Fig. (3), but for 300 MeVv.
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